

 Navigation

 	
 index

 	BelieveViewer 1.0.8 documentation

BelieveViewer documentation

BelieveViewer

Believe is a web photo gallery. Developed to make image sharing easier.
Main idea is nice dark template, good image quality and no any social stuff.
It is also sub galleries, full image download.

Open source, MIT license

First steps

	Overview

	FAQ

	Installation

	Management

API Reference

	Architecture

	Settings

Releases

	Release notes

	ToDo

Indices and tables

	Index

	Content

	Search Page

 Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	BelieveViewer 1.0.8 documentation

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	About

 	Adding content

 	Application cache

 	

 	Architecture

 	Are there any comments?

C

 	

 	Content

D

 	

 	Database driver

F

 	

 	FAQ

 	Features

 	

 	Framework

 	Functional features

G

 	

 	Gallery model

H

 	

 	Holder profile

I

 	

 	Image library

 	Image model

 	Image processing

 	

 	Image storage

 	Installation

M

 	

 	Management

 	

 	Models

N

 	

 	nginx

 	

 	nginx.conf

O

 	

 	Overview

P

 	

 	plan

 	Project structure

 	

 	ProxyUser model

R

 	

 	Redis database

 	Registration? Privacy?

 	

 	Release notes

 	Requirements

S

 	

 	Screen shots

 	Settings

 	Setup application

 	

 	SlideShow

 	Slideshow model

T

 	

 	There are a lot of services

 	

 	ToDo

U

 	

 	uwsgi

 	

 	uwsgi.ini

V

 	

 	Video model

W

 	

 	Web server

 	Where image upload?

 	

 	why one more?

 	WSGI server

 Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_images/screen2.jpg
Believe Viewer Home Download About Back Profile Log out

Test - iBa

Bee X0poLUIO 10Ka He puLen

©B7W 2013

_images/screen3.jpg
-
3017 “«rmx

_static/minus.png

search.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

_static/plus.png

contents.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

Believe documentation content

		Overview
		About

		Features

		Functional features

		Screen shots

		Quick install guide
		Requirements

		Database driver and image library

		Redis database

		Setup application

		WSGI server

		Web server

		What to read next

		Application management
		Adding content

		Application cache

		Frequently Asked Questions
		General questions

		Management questions

		Settings
		Viewer configuration

		Django configuration

		Application architecture
		Framework

		Project structure

		Holder profile

		SlideShow

		Image storage

		Models

		Image processing

		Release notes

		ToDo plan

Indices and tables

		Index

		Search Page

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

ref/architecture.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

Application architecture

Framework

To create this application Django framework [https://www.djangoproject.com/] was taken.
It is very popular and have a lot of build in features or modules to cover app tasks.
There is also experience of working with it.

For example some modules that minimize work.
User profile and image editing was build with help of standard django admin.
API - with tastypie library [http://tastypieapi.org/].

Project structure

Here brief lists of projects tree structure.
Expected that you are familiar with django app structure.
All small helper functions stored in utils.
All functions and classes required for processing models are stored in controls.

		api - Simple REST tastypie api for basic models.

		archive - Some views and controls to create albums zip archives.

		
		core - Main app, all base logic stored here.

		
		files - File system wrapper for storage access and image serving.

		exceptions - All main exception classes.

		images - Resizing and Image caching, Exif data.

		profile - Provide subclass of AdminSite for gallery owners with limited access.

		slideshow - Module for slideshow that cat run on many galleries.

		
		settings - Django and project settings. Split and pack into python packages.

		
		django - Default django settings setup for this project.

		project - Settings used by application. Import django settings.

		local - Local settings, like databases and folder paths. Import project -> django.

		test - Settings to run unittests. Import local -> project -> django.

		debug - Settings to run debug server. Import local -> project -> django.

		sample - Sample of local settings.

		static - Favicons and robots.txt.

		templates - Static templates for some error pages.

Holder profile

Profile was made for gallery owners, where he can edit only his galleries and images.
Technically it is sub class of django AdminSite.
Plus some separate views to provide extra image managing.

SlideShow

It is separate view. It can be call on group on galleries.
Slideshow settings and status stored in relational database, image ids in Redis set.
Slideshow attached to user via session_key.
On slideshow creating each gallery put half random images to redis set.
On next call from set selected and deleted random image.
If no image in set, slideshow status is installed to Finish. And you need to create another one.

Image storage

Application does not have any image/video upload system.
Because complex file manager needed. For me - I’m already have image library mounted to the server.
And I’m not want to copy/past and store it twice.

So app need only some path where images stored.
Each user can have home parameter that defines relative path of his root folder from main storage path.
For example /home/bviewer/data/[user].
Also it is better to give only list and read operation access for this directory and files.

Models

Note

Models mentioned here very similar to the real, but not equal them!
Some options can be omitted.

Gallery, Image, Video models have special unique identifier. It is text field about 8-12 char length.
It is made to provide way to hide some galleries. If all galleries with long complex urls,
you can hide one form gallery tree and share it personally. Off course it is worth than authentication,
but more simple to implement and use.

Special model for gallery holders with additional fields.
URL - full domain name.
Home - relative path from VIEWER_STORAGE_PATH.
Cache size - size in MB of user images cache, range [16, 256].
Cache archive size - size in MB of user archives cache, range [128, 2048].
Top gallery - witch gallery will be displayed on home page. The gallery is created automatically with user.
About title - title for text in about page.
About text - text in about page.

class ProxyUser(User):
 url = models.CharField(max_length=16, unique=True)
 home = models.CharField(max_length=256, blank=True, default='')
 cache_size = models.PositiveIntegerField(default=32)
 cache_archive_size = models.PositiveIntegerField(default=256)
 top_gallery = models.ForeignKey('Gallery', null=True)
 about_title = models.CharField(max_length=256)
 about_text = models.TextField(max_length=1024)

Gallery model
Parent - for example ProxyUser.top_gallery to show on home page.
User - not show on user profile, editable only by admin.
Visibility - Type of visibility.
VISIBLE - all user see in gallery tree and can access,
HIDDEN - not visible in gallery tree but can be access if you know url,
PRIVATE - visible and accessible only for gallery holder.
If parent is None it will be hidden from gallery tree for holder too.
Gallery sorting - Sort order of the nested galleries on time.
ASK - Ascending, DESK - Descending.
allow_archiving - Allow users to download images in archive
Thumbnail - image of gallery tile.

class Gallery(models.Model):
 id = models.CharField(max_length=32, default=uuid_pk(length=8), primary_key=True)
 parent = models.ForeignKey('self', null=True)
 title = models.CharField(max_length=256)
 user = models.ForeignKey(ProxyUser)
 visibility = models.SmallIntegerField(max_length=1, choices=VISIBILITY_CHOICE, default=VISIBLE)
 gallery_sorting = models.SmallIntegerField(max_length=1, choices=SORT_CHOICE, default=ASK)
 allow_archiving = models.BooleanField(default=True)
 description = models.TextField(max_length=512, null=True)
 thumbnail = models.ForeignKey('Image', null=True)
 time = models.DateTimeField(default=datetime.now)

Image model. Store path to files. Do not store exif in database,
images can be changed so this will to redundant file reads.
Gallery - gallery FK.
Path - relative path fom user home. For example: [/home/bviewer/data/[user]]/gallery1/img1.jpg.
Time - default time will be taken from image exif.

class Image(models.Model):
 id = models.CharField(max_length=32, default=uuid_pk(length=12), primary_key=True)
 gallery = models.ForeignKey(Gallery)
 path = models.CharField(max_length=256)
 time = models.DateTimeField(default=datetime.now)

Video model. Store Vimio or YouTube links.
UID - vimio or YouTube video id.
Type - VIMIO or YOUTUBE.
Gallery - gallery FK.

class Video(models.Model):
 id = models.CharField(max_length=32, default=uuid_pk(length=12), primary_key=True)
 uid = models.CharField(max_length=32)
 type = models.SmallIntegerField(max_length=1, choices=TYPE_CHOICE, default=YOUTUBE)
 gallery = models.ForeignKey(Gallery)
 title = models.CharField(max_length=256)
 description = models.TextField(max_length=512, null=True)
 time = models.DateTimeField(default=datetime.now)

Slideshow model. Store slideshow settings and status.
user - Need to check permissions.
session_key - To identify user.
timer - Time between image switching.
status - SlideShow status.
NEW - Task added to queue.
BUILD = Task done, slideshow can be viewed.
FINISHED = All images shown.

class SlideShow(models.Model):
 id = models.CharField(max_length=32, default=uuid_pk(length=8), primary_key=True)
 gallery = models.ForeignKey(Gallery)
 user = models.ForeignKey(User, null=True)
 session_key = models.CharField(max_length=32)
 timer = models.SmallIntegerField(max_length=4, default=10)
 status = models.SmallIntegerField(max_length=1, choices=STATUS_CHOICE, default=NEW)
 image_count = models.IntegerField(max_length=8, default=0)
 time = models.DateTimeField(default=timezone.now)

Image processing

All image resizing happens in separate processes via Redis Queue [http://python-rq.org/].
The result stored in cache.
On full image downloading or if size is bigger than real image, link created.
Cache file name calculated from last change time and resize options. Task added when first access happened.
Image fully private and controlled by app, from outside there is no access to cache.
To get image, application send back special header, and nginx serve it manually.
To read more go wiki.nginx.org [http://wiki.nginx.org/X-accel].

For now there is one feature, while images resizing - django process hang.

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

_images/screen1.jpg
Believe Viewer Home About Profile Log out

Welcome

Edit main gallery to change it

Wrap Test - ABa ° Test - OauH
24 Mar 2013

Bee X0powo N0ka 5 He npuen b il g

©B7W 2013

intro/faq.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

Frequently Asked Questions

General questions

It describes such as for whom, for what that application was designed.

There are a lot of services, why one more?

Yes. There are flickr, yandex photo, vk.com, google drive and plus.
Some of them ugly. A lot of them have bad image quality.
All of them looks like working tool, not cool photo gallery.

I do not want one more trash photo storage as a part of some service.
I want service where photo is the key feature.

Also services like to add new features.
And in most cases make it worse. I want stability.

Are there any comments?

No. No like button too. No comments. No any social stuff.
Because all comments looks like two pattern.
First “Great!” and second “Bullshit!”.
So do not spend yours and authors time.
If you want to talk, do it in social networks.

Registration? Privacy?

It is small service and if we ask users to make account they go away.
Also permission management is hard work.
So account available only for gallery holders.

But there are some ways to stay private.
Set gallery hidden, available only via secret link.
And set it private, available only for holder.

Like gallery, images have visibility settings.
They inherit it from gallery. And there is no way to download it
if you have not such permission. There aren’t directs links.

Management questions

It describes how to deal with service

Where image upload?

Viewer has no upload system. Only image selecting.
The idea is that your hole image storage mounted from somewhere.
Today images have big size, and it is too expensive to store it twice.

At all there is no complex management system. Just files on disk -> nice view, that’s all

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

ref/settings.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

Settings

Sample settings can be found in bviewer/settings/sample.py.
There is not only viewer settings but
django framework too [https://docs.djangoproject.com/en/dev/ref/settings/].

Viewer configuration

VIEWER_USER_ID

Default: None

If gallery is used for one person or for tests set user id here.

VIEWER_CACHE_PATH

Required

Path where cache will be stored. Check that this folder can be seen from nginx.
Path split for 2 sub folders: reised images and links and zip archives.
Under this folders each user have his own sub folder.
About cache clearing read Application cache.

VIEWER_STORAGE_PATH

Required

Start path where full images are located.
Each user can have his own home, in profile.storage.

VIEWER_IMAGE_SIZE

Default:

{
 'tiny': {
 'WIDTH': 150,
 'HEIGHT': 150,
 'CROP': True,
 'QUALITY': 85,
 },
 'small': {
 'WIDTH': 300,
 'HEIGHT': 300,
 'CROP': True,
 },
 'big': {
 'WIDTH': 1920,
 'HEIGHT': 1080,
 },
 'full': {
 'WIDTH': 10 ** 6,
 'HEIGHT': 10 ** 6,
 },
}

Sizes to resize images. Is it a map of maps.
Example - 'small': {'WIDTH': 300, 'HEIGHT': 300, 'CROP': True, 'QUALITY': 95,}.
By default crop is False, on True edges cut off, quality equal 95%.
If image smaller than size it will be linked.

Tiny size used in admin to minimize cache size. Small size used in image thumbnails.
Big size used for js gallery. Full size used to download real image.

VIEWER_DOWNLOAD_RESPONSE

Default:

{
 'BACKEND': 'bviewer.core.files.response.nginx',
 'INTERNAL_URL': '/protected',
 'CACHE': False,
}

X-Accel-Redirect for web server to improve file serving, highly recommended!
Have two values bviewer.core.files.response.nginx and bviewer.core.files.response.django.
Set cache true to activate redirect response caching, it save 2 queries per image.
Be careful, cache can’t work with django! because it return hole file.

EXTRA_HTML

Default: empty string

A string that fit before the closing body tag.
For example some analytics HTML/JS code.

Django configuration

ALLOWED_HOSTS

Default: []

A list of domains for working app. For example dev.com.
It is a security measure. More details look
here [https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts].

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

intro/overview.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

Overview

About

BelieveViewer is a simple photo gallery written in python with django.
The main idea of this app is personal web photo sharing.
There is no any comments, ratings, even registration and other social stuff.
There is no complex management system.

Why this app was developed? I have not found any nice gallery with content management.
All existing software was or too simple, or looks terrible.

BelieveViewer is open source project, released by MIT license.

Features

		
Gallery have nice dark template. It is scalable, and can be viewed in mobile devices.
Images are cutting to square tile. For full image view there is js gallery that have navigation, slide show.

		
All images can be organized to galleries. Each gallery can store another galleries.
Also you can specify description.

		
There is no registration for users, but galleries have some policies.
Visible - visible for all users. Hidden - no mention in gallery tree, but can be accessed via url.
Private - only for owner.

		
Images can’t be upload to server via app, they have to stored there already.
App automate resize and cache images. These parameters can be configured.

		
All real full size images in gallery can be download via zip archive.
Sub galleries not included.

		
Slideshow on gallery or random slideshow on group of galleries.

		
Video can be add from Vimio or YouTube.

		
Simple about page for information about owner.

		
Application is multi user, each user need separate domain name.

Functional features

Here some specific programming items. Detail library dependencies can be viewed in requirements.txt.

		
Writen in python with Django framework.

		
All long operation run in separate RQ processes.

		
Need Redis DB for queue and cache.

		
Viewer serve images with help of nginx X-Accel-Redirect.

Screen shots

Home page, list of galleries.

[image: ../_images/screen1.jpg]
Gallery with images

[image: ../_images/screen2.jpg]
JS gallery with full screen image

[image: ../_images/screen3.jpg]

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

releases/todo.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

ToDo plan

		
Any ideas?

You can write me email to bviewer@isudo.ru or use issue tracker
bitbucket.org [https://bitbucket.org/B7W/believeviewer/issues?status=new&status=open].

But do not wait that I will implement all proposals. I do not want one more CMS monster.

		
Gallery flow

Up today all thumbnails are catting to square tile.
It is normal but not the best choice. 3 columns with max fit thumbnails looks very cool.
To take maximum from that style it is better to mix landscapes and portraits.
I’m not really understand how to implement this, but I want.

		
Exif

Sometimes it is necessary to get some exif info. Best ways to show it in right mouse click menu.
Also there we can display links to download images in different sizes.

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

intro/installation.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

Quick install guide

There are a lot of ways to deploy it. This guide provide one simple way.

Requirements

Believe writen in python with Django framework [https://www.djangoproject.com/].
Also it is need Redis database for cache and tasks.

Application need these libraries to run:
django, django-rq, djangorestframework, django-filter, redis, pytz,
pillow or PIL, psycopg2. For more details look requirements.txt.

You can use any django supported database server.
It is officially works with PostgreSQL, MySQL, Oracle and SQLite.
For more look here [https://docs.djangoproject.com/en/dev/topics/install/#get-your-database-running]

Note

App tested only with ubuntu 12.04, python 2.7 / 3.2, postgres 9 and uwsgi & nginx.

Database driver and image library

There is two ways. First install them from ubuntu package library.
Or install from source. The second is more preferred.

From packages

sudo apt-get install python-pip python-psycopg2 python-imaging
sudo pip install django-rq django-tastypie==0.9.15 django>=1.5 fabric pytz redis

From source

sudo apt-get install python-dev python-pip
sudo apt-get install libjpeg-dev libfreetype6-dev zlib1g-dev
sudo apt-get install libpq-dev
sudo pip install -r requirements.txt

Redis database

For task queue bviewer use redis database. In default repositories version is too old.
So it is needed to use ppa, rwky/redis for example.

sudo apt-get install python-software-properties
sudo add-apt-repository ppa:rwky/redis
sudo apt-get update
sudo apt-get install redis

Setup application

Copy sample setting file, and edit it.
At least it is need to set cache, storage path
and allowed hosts.

cp bviewer/settings/sample.py bviewer/settings/local.py
vim bviewer/settings/local.py

After run command to create tables in database. On syncing you will be prompt to create admin user.
Then collect all static files from apps to one directory where web server can server it.

python manage.py syncdb
fab static

WSGI server

To run application as daemon we install uwsgi.

sudo apt-get install uwsgi uwsgi-plugin-python

Than copy sample config and change paths in it according to yours installation folder.

sudo cp docs/files/uwsgi.ini /etc/uwsgi/apps-available/uwsgi.ini
sudo vim /etc/uwsgi/apps-available/uwsgi.ini
sudo ln -s /etc/uwsgi/apps-available/uwsgi.ini /etc/uwsgi/apps-enabled/uwsgi.ini

uwsgi.ini file content:

[uwsgi]
uid = believe
gid = believe
plugins = python
socket = /var/run/believe.sock
chown-socket = believe:www-data
master = true
processes = 8
python-path = /home/believe/viewer
chdir = /home/believe
module = bviewer.wsgi
env = LANG=ru_RU.UTF-8
attach-daemon = python /home/believe/viewer/manage.py rqworker default low
attach-daemon = python /home/believe/viewer/manage.py rqworker default
disable-logging = true

After restart usgi service.

sudo service uwsgi restart

Note

For background tasks, such as image processing by default starts 2 workers.
With default and low queue.

Note

For python 3 use uwsgi-plugin-python3 and replace in uwsgi.ini python to python32

Web server

To run web server we need install nginx.

sudo apt-get install nginx

Than copy sample config. Change paths according to yours installation folder, change domains.

sudo cp docs/files/nginx.conf /etc/nginx/apps-available/believe.conf
sudo vim /etc/nginx/apps-available/believe.conf
sudo ln -s /etc/nginx/apps-available/believe.conf /etc/nginx/apps-enabled/believe.conf

nginx.conf file content:

server {
 listen 80 default;

 server_name believe.com www.believe.com;

 charset utf-8;

 keepalive_timeout 150;
 client_max_body_size 1024m;

 #access_log /var/log/nginx/believe.access.log;
 error_log /var/log/nginx/believe.error.log;

 location / {
 include uwsgi_params;
 uwsgi_pass unix:///var/run/believe.sock;
 }

 location /static {
 access_log off;
 expires 7d;
 gzip_static on;
 alias /home/believe/viewer/static;
 }

 location /favicon.ico {
 access_log off;
 expires max;
 alias /home/believe/viewer/bviewer/static/favicon.ico;
 }

 location /robots.txt {
 alias /home/believe/viewer/bviewer/static/robots.txt;
 }

 location /protected {
 internal;
 alias /home/believe/viewer/cache;
 }
}

After restart nginx service.

sudo service nginx restart

What to read next

Read Settings, Management.

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

intro/management.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

Application management

Adding content

To add content login, and click profile link on a right side.
On django admin site add new gallery (Home › Galleries).
After creating follow Select images on disk link in Images field.
In new window find in file system your directory with images and check them. Save.

To select gallery thumbnail, go to the gallery settings (Home › Galleries > Some gallery).
At the bottom click Click to see all image previews or select gallery thumbnail.
Select one from appeared images. Save.

To add video, go to videos (Home › Videos). Add video, in Gallery field select required gallery.

Application cache

To clear images and zip archives cache run first command.
Old files will be deleted if hole size will be bigger than user available.
To remove users cache directories run second.
To remove main cache directory run third.

python manage.py clearcache
python manage.py clearcache full

It is better to run first command every hour.
Open crontab file and add line to the end.

sudo vim /etc/crontab
00 * * * * believe python /home/believe/viewer/manage.py clearcache

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

releases/notes.html

 Navigation

 		
 index

 		BelieveViewer 1.0.8 documentation »

Release notes

v1.0.8 - 20.05.1014

Add some small features to profile. Need database scheme update.

ALTER TABLE core_gallery ADD COLUMN allow_archiving boolean NOT NULL DEFAULT true;

		Fix bug not safe HTML_EXTRA

		Fix bug admin gallery title unique integrity error

		Add bulk time edit and update from exif actions for images in profile

		Add option to allow/disallow gallery archiving

		Add disk cache info in user profile

v1.0.7 - 26.01.1014

Fix some bugs. Move project to django 1.6

		Fix exception in getting image cache name on wrong file path

		Add year filter on sub galleries pages

		Add python 3.2 support

		Add EXTRA_HTML config variable to pass some html/js code to template

v1.0.6 - 3.01.1014

Hot critical bug fix.

		Fix bug with worker redis connection serialization

v1.0.5 - 3.01.1014

Move project to new short address. Add slideshow module. Fix too big size vertical image.
The basis for the transition to the new rest module was more simple and clear api.

Deployment: Run manage.py syncdb.
Add slideshow permissions to holders to allow it in profile.
Update requirements.

		Move project from https://bitbucket.org/b7w/believeviewer to https://bitbucket.org/b7w/bviewer

		Fix image resize feature

		Add custom scrollbar for webkit

		Move project from Tastypie to Django REST framework

		Add mock redis dependency for test purpose

		Add slideshow app

v1.0.4 - 10.09.1013

Change copyright view. Add deployment with new fabfile. Improve profile app.
Fix some bugs and documentation.

		Update documentation to last changes

		Remake fabfile, add some features

		Fix bug when with ctrl key gallery not open in new tab

		Refactor requirements, update tastypie to v0.10.0

		Change copyright display

		Add some account fields to user profile

v1.0.3 - 8.08.1013

Improve profile site, fix some bugs. Remove link from preview to separate image view.

		Fix bug when new image allowed to add to not user gallery

		Simplified admin and profile code

		Add auto detect image path in profile

		Add image count in gallery profile

		Clear and rewrite a little css

		Remove link from preview to separate image view

v1.0.2 - 31.07.1013

Hot critical bug fix.

		Fix bug with wrong nginx response protected url

v1.0.1 - 31.07.1013

Add choice for asc/desc gallery sorting. Plus some clean up and improvements.
Need database scheme update. Need update local.py setting file, change import statement.

ALTER TABLE core_gallery ADD COLUMN gallery_sorting smallint NOT NULL DEFAULT 1;

		Fix not playing video from js gallery

		Add RQ_DEBUG settings

		Move all settings to default django.settings package

		Edit documentation, add simple FAQ

		Make normal back link in galleries

		Improve logging and error handling

		Add timezone support

v1.0.0 - 13.07.1013

First stable release. There can be some bugs and features.
But all main ideas implemented and documentation ready.
Look, feel, be happy :-)

 © Copyright 2013, B7W.
 Created using Sphinx 1.3.1.

